Photo
© Franky - Fotolia.com

Do you have to put your glasses on to see your computer screen? You may not have to do so much longer, thanks to technology being developed at UC Berkeley that could enable your computer to take over the task.

Researchers there are developing computer algorithms to compensate for an individual’s visual impairment, and creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses.

The technology could potentially help hundreds of millions of people who currently need corrective lenses to use their smartphones, tablets and computers. One common problem, for example, is presbyopia, a type of farsightedness in which the ability to focus on nearby objects is gradually diminished as the aging eyes’ lenses lose elasticity.

More importantly, the displays could one day aid people with more complex visual problems, known as high order aberrations, which cannot be corrected by eyeglasses, said Brian Barsky, UC Berkeley professor of computer science and vision science, and affiliate professor of optometry.

“We now live in a world where displays are ubiquitous, and being able to interact with displays is taken for granted,” said Barsky, who is leading this project. “People with higher order aberrations often have irregularities in the shape of the cornea, and this irregular shape makes it very difficult to have a contact lens that will fit. In some cases, this can be a barrier to holding certain jobs because many workers need to look at a screen as part of their work. This research could transform their lives, and I am passionate about that potential.”

Pinhole screen

The UC Berkeley researchers teamed up with Gordon Wetzstein and Ramesh Raskar, colleagues at the Massachusetts Institute of Technology, to develop their latest prototype of a vision-correcting display. The setup adds a printed pinhole screen sandwiched between two layers of clear plastic to an iPod display to enhance image sharpness. The tiny pinholes are 75 micrometers each and spaced 390 micrometers apart.

“The significance of this project is that, instead of relying on optics to correct your vision, we use computation,” said lead author Fu-Chung Huang, who worked on this project as part of his computer science Ph.D. dissertation at UC Berkeley. “This is a very different class of correction, and it is non-intrusive.”

“Our technique distorts the image such that, when the intended user looks at the screen, the image will appear sharp to that particular viewer,” said Barsky. “But if someone else were to look at the image, it would look bad.”

The research team will present this computational light field display on Aug. 12 at the International Conference and Exhibition on Computer Graphics and Interactive Techniques, or SIGGRAPH, in Vancouver, Canada.


Share your Comments